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In this work, we establish a few exact identities through commutation of intraorbital and interorbital on-site
pairings with a two-orbital model describing the FeAs-based superconductors. Applying the conclusion drawn
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superconducting pairing of the model. Hence the favorable pairings in high-temperature oxypnictide supercon-
ductors are proposed.
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I. INTRODUCTION

The family of FeAs-based ReFeAsO1−xFx �Re=La, Nd,
Ce, Pr, etc.� high-temperature superconductors �SCs� �Refs. 1
and 2� has sparked great interest both experimentally3–15 and
theoretically.16–36 So far the transition temperature Tc has
gone up as high as above 50 K.3–5 This family of materials
provides another platform to explore high-Tc superconduc-
tivity besides cuprate superconductors. Both FeAs-based ma-
terials and cuprate superconductors are transition-metal com-
pounds on a two-dimensional �2D� square lattice, and their
parent compounds are magnetically ordered. However, there
are several significant differences in their electronic proper-
ties. First, the undoped oxypnictides are bad metals,5 while
cuprates are Mott/charge-transfer insulators. Second,
neutron-scattering experiments have shown that the magnetic
structure in undoped oxypnictides is not a simple antiferro-
magnetic order as in cuprates but instead a collinear spin-
density wave along the �� ,0� direction.5,6 Third, probably
the most important, the multiorbital nature of the oxypnic-
tides has been emphasized, in contrast to the single-orbital
cuprates. From the band-structure point of view, it seems
likely that all 3d orbitals of the Fe atoms contribute to the
low-energy electronic properties.16,17

Meanwhile, the pairing symmetry remains controversial.
Based on the fermionic nature of the gap function, the pos-
sible superconducting order parameters can be classified ac-
cording to group theory.18–21 There are surveys that support
either s or extended s wave,22–26 or p wave,27,28 or d
wave,29–34 or even mixture of sxy and dx2−y2.35,36 Neverthe-
less, none of them has been confirmed, although s wave
seems to have more support. Recently, superconductivity in
either electron-doped or hole-doped oxypnictides with
multiple-gap structure was suggested by specific-heat
measurements,7 nuclear-magnetic-resonance �NMR�
experiments,10–12 point-contact spectroscopy,13 and angle-
resolved photoelectron spectroscopy �ARPES�.14 Therefore,
the investigation of possible coexistence of various super-
conducting orders is highly desired and is the motivation of
this work.

In the following, we investigate the coexistence of differ-
ent superconducting pairing symmetries in a multiorbital
model. An important result which we would like to empha-

size is that different hopping amplitudes in a multiorbital
system can greatly enhance the coexistence of various kinds
of pairing orders, such as d- and extended s-wave pairings.
Theoretically, the simultaneous existence of these pairing or-
ders has been speculated about for a single-band system such
as the single-band Hubbard model. However, its stability
generally requires the introduction of additional interactions,
e.g., electron-phonon interactions, which give rise to differ-
ent hopping amplitudes. While in the multiorbital system, the
extra orbital degrees of freedom generally create the aniso-
tropic hopping integrals of interorbital hopping and intraor-
bital hopping. The peculiarity in the multiorbital systems
may lead to the simultaneous existence of pairing orders.

II. HAMILTONIAN

The Fe atoms in a Fe-As plane form a 2D square lattice.
Due to the buckling of the As atoms, the real unit cell con-
tains two Fe atoms. As shown in crystal-field splitting and
simple valence counting as well as more reliable local-
density-approximation �LDA� calculations,16 it is reasonable
to assume that only the lowest 2 or 3 d orbitals of Fe play an
important role in the low-energy physics of these materials.
LDA results show the presence of small Fermi surfaces
�FS�.25 In the unfolded Brillouin zone �BZ�, corresponding to
one Fe per unit cell, electron and hole pockets exist around
M and � points, respectively.15 The Fermi surfaces are hole-
like around the � point and electronlike around the M point
of the Brillouin zone. Upon electron doping, the holelike FS
shrinks, while the electronlike FS expands, as shown in Fig.
1. The leftmost figures schematically represent the hole dop-
ing region �less than electron half-filling�, in which holelike
FS resides clearly around � point. The middle figures corre-
spond to the half-filling case, in which electronlike FS
around M point appears, while holelike FS is slightly scaled
down. The rightmost figures indicate the electron doping re-
gion �more than electron half-filling�, in which the electron-
like FS spreads out and holelike FS shrinks further. The
dominant contributions to the superconductivity clearly arise
from the surroundings of the � and M points. Therefore, we
consider a 2D square lattice with “dxz ,dyz” orbitals per site as
a starting model to describe FeAs-based superconductors37
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for the oxypnictide compounds. The reason will be discussed
later;

H = H0 + HI, �1�

H0 = − �
ij�

tij,�
cc �ci,�

† cj,� + H.c.� − �
ij�

tij,�
dd �di,�

† dj,� + H.c.�

− �
�ij��

tij,�
cd �ci,�

† dj,� + H.c.� − ��
i�

�ni,c,� + ni,d,�� , �2�

HI = �
i

�Ucni,c,↑ni,c,↓ + Udni,d,↑ni,d,↓ + Ucdni,cni,d − JHSi,cSi,d� .

�3�

Here c �d� labels dxz �dyz� orbitals, ci,�
† �di,�

† � is the creation
operator for electrons of spin �, orbital dxz �dyz� at site i,
ni,c,�=ci,�

† ci,�, ni,d,�=di,�
† di,�, and the hopping integrals are

tij,�
cc = t1��i − j + x̂� + t2��i − j + ŷ� + t3��i − j + x̂ + ŷ�

+ t3��i − j − x̂ + ŷ� , �4�

tij,�
dd = t2��i − j + x̂� + t1��i − j + ŷ� + t3��i − j + x̂ + ŷ�

+ t3��i − j − x̂ + ŷ� , �5�

tij,�
cd = t4��i − j + x̂ − ŷ� + t4��i − j − x̂ + ŷ� − t4��i − j + x̂ + ŷ�

− t4��i − j − x̂ − ŷ� , �6�

which are illustrated in Fig. 2. Uc and Ud are intraband Cou-
lomb repulsions with the relation Uc=Ud�U, Ucd denotes
interband Coulomb repulsion, and JH is Hund’s rule cou-

pling. For later convenience, we set t�= �t1+ t2� /2 and t�

= �t1− t2� /2. The space group of LaFeAsO is P4 /nmm and it
is characterized by point group D4 and lattice translation
group T. Therefore, the basis matrix functions belong to dif-
ferent irreducible representations of point group D4, which
has five irreducible representations, including four one-
dimensional �1D� representations �A1, A2, B1, and B2� and
one two-dimensional representation �E�. Typical bases in
each 1D representation are listed in Table I. The orbital part
of the pairing matrix � is in the space spanned by two-
component vectors, i.e., dxz and dyz �like a spinor�, which is
the irreducible representation E of the point group D4, and
	0,1,2,3 in Table I are transformed as A1, B2, A2, and B1, re-
spectively, with 	i as the Pauli matrices.19,21

In the following, we will establish sum rules for various
pairings by exploiting the commutation relations between the
Hamiltonian and the on-site pairing operators. Suppose Ai,
Bi, Ci, and Di are some localized operators defined on lattice

 and they satisfy the commutation relation

�H
,Ai� = �Bi + �Ci + 
Di, �7�

where ��0, ��0, and 
�0 are some constants. Since

��0	�H
,Ai�	�0
 = �E0 − E0���0	Ai	�0
 = 0, �8�

where �0 is the ground state of H
, we have

TABLE I. One-dimensional irreducible representations �IRs� of
D4 group in spatial and orbital spaces.

IR Spatial basis functions Bases in orbital space �

A1 x2+y2 	0

B2 xy 	1

A2 xy�x2−y2� 	2

B1 x2−y2 	3
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FIG. 1. �Color online� Top: The Fermi surface of the two-orbital
model on the large one Fe per cell BZ at �=1.00, �=1.45, and �
=2.00 from left to right. The dashed square indicates the BZ of two
Fe per cell. Bottom: The Fermi surface folded into the two Fe per
cell BZ at �=1.00, �=1.45, and �=2.00 from left to right. Here the
hopping integrals of the tight-binding model are set as t1=−1, t2

=1.3, and t3= t4=0.85, which are shown in Fig. 2. In this case, �
=1.45 for the middle two figures corresponds to half-filling. The
leftmost two figures correspond to hole doping, and Fermi surfaces
�red lines� reside around � point. Upon doping, the hole Fermi
surfaces shrink, while the electron Fermi surfaces around M point
�green lines� expand.
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FIG. 2. �Color online� The schematic illustration for the hopping
parameters of the two-orbital dxz ,dyz model on a square lattice. The
projections of the dxz �dyz� orbitals onto the xy plane are depicted in
red �green�. Here t1 represents the nearest-neighbor hopping inte-
gral between � orbitals and t2 the nearest-neighbor hopping integral
between � orbitals; t3 denotes next-nearest-neighbor hopping be-
tween similar orbitals and t4 the next-nearest-neighbor hopping in-
tegral between different orbitals.
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���0	Bi	�0
 + ���0	Ci	�0
 + 
��0	Di	�0
 = 0. �9�

It implies that the orders of Bi, Ci, and Di should be either
absent altogether or at least two of them should exist simul-
taneously in the ground state.38 The rigorous proof will be
presented in Sec. V.

III. INTRAORBITAL PAIRING

We consider intraorbital pairing first and define the on-site
pairing operator on site r

�r
cc = cr,↑cr,↓, �r

dd = dr,↑dr,↓, �10�

the nearest-neighbor �NN� or the next-nearest-neighbor
�NNN� spin singlet intraorbital pairing operators

�
r+��
cc

= cr,↑cr+�� ,↓ − cr,↓cr+�� ,↑,

�
r+��
dd

= dr,↑dr+�� ,↓ − dr,↓dr+�� ,↑, �11�

and NN or NNN spin singlet interorbital pairing operators

�
r+��
cd

= cr,↑dr+�� ,↓ − cr,↓dr+�� ,↑,

�
r+��
dc

= dr,↑cr+�� ,↓ − dr,↓cr+�� ,↑. �12�

By calculating the commutation relations between the
Hamiltonian and the on-site pairing operators, we find that
results can be expressed as linear combinations of s- and
d-wave symmetry operators involving NN and NNN elec-
trons, such as the on-site s-wave pairing operators, extended
s�-wave pairing operators, sxy-wave pairing operators,
dx2−y2-wave pairing operators, and dxy-wave pairing operators
with the definition

on-site s wave:�s =
1

N
�

r

�r,

extended s� wave:�s� =
1

N
�

r

��r−x̂ + �r+x̂ + �r−ŷ + �r+ŷ� ,

sxy wave:�sxy
=

1

N
�

r

��r+x̂+ŷ + �r−x̂−ŷ + �r+x̂−ŷ + �r−x̂+ŷ� ,

dxy wave:�dxy
=

1

N
�

r

��r+x̂+ŷ + �r−x̂−ŷ − �r+x̂−ŷ − �r−x̂+ŷ� ,

dx2−y2 wave:�dx2−y2 =
1

N
�

r

��r−x̂ + �r+x̂ − �r−ŷ − �r+ŷ� .

�13�

The respective pair coordinates are shown in Fig. 3.
Thus, we have

�H,�s
cc� = t��s�

cc + t��dx2−y2

cc + t3�sxy

cc − t4�dxy

cd

− �U − 2� + 2Ucdnr,d��s
cc, �14�

�H,�s
dd� = t��s�

dd − t��dx2−y2

dd + t3�sxy

dd − t4�dxy

dc

− �U − 2� + 2Ucdnr,c��s
dd. �15�

Since there is interorbital hopping in the original Hamil-
tonian �1�, interorbital pairings appear on the right side of
Eqs. �14� and �15�. Furthermore, we treat the quartic terms
such as nr,d�s

cc in the mean-field sense by taking number
operators nr as their average �nr
, assuming that there is no
charge-density wave �CDW�. Even if CDW occurs, the Cou-
lomb repulsion will suppress the on-site s-wave pairing, i.e.,
�s=0, and it will not affect our conclusion. Thus, in the
following, we treat the number operators for the two orbitals
as �nr,d
= �nr,c
��n
 in all quartic terms. Defining U1=U
−2�+2Ucd�n
, we consider linear combinations of Eqs. �14�
and �15�,

�H,�s
cc + �s

dd� = t���s�
cc + �s�

dd� + t���dx2−y2

cc − �dx2−y2

dd � + t3��sxy

cc

+ �sxy

dd � − t4��dxy

cd + �dxy

dc � − U1��s
cc + �s

dd� ,

�16�

�H,�s
cc − �s

dd� = t���s�
cc − �s�

dd� + t���dx2−y2

cc + �dx2−y2

dd �

+ t3��sxy

cc − �sxy

dd � − U1��s
cc − �s

dd� . �17�

To write the formulas in a more compact way, with the help
of the Nambu representation ���k�= �c−k,� ,d−k,��, the pairing
gap in momentum and orbital spaces can be expressed as
�k����,��−k�f�k��	i�����,�̄�k�, where 	i is the basis of or-
bital space and f�k� is the pairing function in momentum
space. f�k� for different pairing symmetries is given by

on-site s wave:fs�k� = 1,

extended s� wave:fs��k� = cos kx + cos ky ,

sxy wave:fsxy
�k� = cos kx cos ky ,

dxy wave:fdxy
�k� = sin kx sin ky ,

FIG. 3. �Color online� The pair coordinates �� used to define ���,
the range over five positions including �0,0�.
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dx2−y2 wave:fdx2−y2�k� = cos kx − cos ky . �18�

Then, in another representation, Eqs. �16� and �17� can be
written as

�H,	0� � t��cos kx + cos ky�	0 + t��cos kx − cos ky�	3

+ t3�cos kx cos ky�	0 + t4 sin kx sin ky	1 − U1	0,

�19�

�H,	3� � t��cos kx + cos ky�	3 + t��cos kx − cos ky�	0

+ t3�cos kx cos ky�	3 − U1	3, �20�

There are five types of pairing patterns on the right side of
Eq. �19� and four in Eq. �20�, listed as Nos. 1–9 in Table II.

IV. INTERORBITAL PAIRING

When interorbital pairing is taken into consideration,
more pairings are involved. Defining the on-site interorbital
pairing operator as

�r
cd = cr,↑dr,↓, �r

dc = dr,↑cr,↓, �21�

and NN or NNN interorbital pairing operators in a similar
manner with U2= �U−2�+2Ucd−3JH /4��n
+3JH /4, we get

�H,�s
cd + �s

dc� = t���s�
cd + �s�

dc� + t3��sxy

cd + �sxy

dc �

− t4��dxy

cc + �dxy

dd � − U2��s
cd + �s

dc� . �22�

The pairing operators can be expressed in momentum and
orbital space as

�H,	1� � t��cos kx + cos ky�	1 + t3�cos kx cos ky�	1

− t4�sin kx sin ky�	0 − U2	1. �23�

Similarly, with the definition of spin triplet pairing operators

�̄
��
cd

= cr↑dr+��↓ + cr↓dr+��↑,

�̄
��
dc

= dr↑cr+��↓ + dr↓cr+��↑, �24�

and U3= �U−2�+2Ucd+JH /4��n
−JH /4, we have

�H,�s
cd − �s

dc� = t���̄s�
cd − �̄s�

dc� + t3��̄sxy

cd − �̄sxy

dc �

− U3��s
cd − �s

dc� . �25�

The formula in our momentum and orbital representation is

�H,i	2� � t��cos kx + cos ky�i	2 + t3�cos kx cos ky�i	2

+ U3i	2. �26�

There are four types of pairing on the right side of Eq. �23�
and three in Eq. �26�, which are listed as Nos. 10–16 in Table
II.

V. INEQUALITIES AND ANALYSIS

With the use of the above commutation relations, let us
establish the sufficient condition for the coexistence of two
long-range orders rigorously. We should take advantage of
the theory of off-diagonal long-range order39 and generalize
the approach of Ref. 40 to obtain a strict proof. Interested
readers may also find similar treatments to the single-band
Hubbard model and the t-J model.41,42

Let Gi be a general localized operator centered at site i
defined on lattice 
. We define a reduced density matrix
M�Gi�= �Mij� by

Mij � ��0�
�	Gi
†Gj	�0�
�
 . �27�

Then, �0�
� has a long-range order of Gi if and only if the
largest eigenvalue �max of M�Gi� satisfies the condition39

�max � �N
, �28�

where ��0 is a constant independent of N
, as N
→� with
fixed density.

The presence of a long-range order of Gi in the ground
state �0�
� can be also thought as a Bose-Einstein conden-
sation of the G operator at a certain reciprocal vector k=k0,
which is characterized by

��0�
�	Gk
†Gk	�0�
�
 � �N
, � � 0, �29�

where Gk is the reciprocal operator of Gi in k space.
Assuming that such an operator Ai satisfies the following

commutation relation:

TABLE II. Potential pairing basis matrices under different irre-
ducible representations of the model, which are classified into three
groups in the table. The first column is the index number, the sec-
ond and the third columns denote the representations and the basis
matrix functions, respectively. The parities of spins �singlet �S� or
triplet �T�� and orbitals �symmetric �s� or antisymmetric �a�� are
shown in the fourth and the last columns, respectively.

No. �i� IR Pairing function f i�k� Spin Orbital

1 A1 �cos kx+cos ky�	0 S s

2 A1 �cos kx−cos ky�	3 S s

3 A1 �cos kx cos ky�	0 S s

4 A1 �sin kx sin ky�	1 S s

5 A1 	0 S s

6 B1 �cos kx+cos ky�	3 S s

7 B1 �cos kx−cos ky�	0 S s

8 B1 �cos kx cos ky�	3 S s

9 B1 	3 S s

10 B2 �cos kx+cos ky�	1 S s

11 B2 �cos kx cos ky�	1 S s

12 B2 �sin kx sin,ky�	0 S s

13 B2 	1 S s

14 A2 �cos kx+cos ky�i	2 T a

15 A2 �cos kx cos ky�i	2 T a

16 A2 i	2 T a

YOU et al. PHYSICAL REVIEW B 79, 014508 �2009�

014508-4



�H
,Ai� = �
�

��Gi
�, �30�

which is a general formula of Eq. �7�. We replace Eq. �30� in
k space with

�H
,Ak� = �
�

��Gk
� � Qk. �31�

Let us consider the correlation function of Qk. Clearly, we
can have

0 � ��0�
�	Qk
†Qk	�0�
�


� ��0�
�	Qk
†Qk	�0�
�
 + ��0�
�	QkQk

†	�0�
�


� SQ. �32�

Introducing a complete set of the eigenvectors ��n�
�
 of
H
, SQ can be further written as

SQ = �
n

�	��n�
�	Qk
†	�0�
�
	2 + 	��n�
�	Qk	�0�
�
	2�

= �
n
� 	��n�
�	Qk

†	�0�
�
	
�En − E0

�	��n�
�	Qk
†	�0�
�


�	�En − E0� +
	��n�
�	Qk	�0�
�
	

�En − E0

��	��n�
�	Qk	�0�
�
	�En − E0�� . �33�

Since �0�
� is the ground state of H
, �En−E0 is well de-
fined. We should notice that the fraction terms in Eq. �33�
seem ill defined because the complete set of eigenvectors
includes the ground state and some eigenvectors �n�
� may
be degenerate with �0�
�. However, these seemingly ill-
defined fraction terms in Eq. �33� can be eliminated by sub-
stituting the commutation relation �31� into the numerators
of the fractions. When En−E0=0, we have

��n�
�	Qk	�0�
�
 = �En − E0���n�
�	Ak	�0�
�
 = 0.

�34�

Consequently, this gives

	��n�
�	Qk	�0�
�
	
�En − E0

= �En − E0��n�
�	Ak	�0�
�
 = 0.

�35�

Similarly, we can also show that ��n�
�	Qk
†	�0�
�
=0.

Therefore, we do not have to exclude these specific cases
from the summation in Eq. �33�.

Next, we apply the Cauchy-Schwarz inequality to the
right side of Eq. �33�. We obtain

SQ � ���
n

�	��n�
�	Qk
†	�0�
�
	2 + 	��n�
�	Qk	�0�
�
	2��En − E0��

����
n

�	��n�
�	Qk
†	�0�
�
	2 + 	��n�
�	Qk	�0�
�
	2�

�En − E0� � . �36�

The first square brackets on the right side of inequality �36� is equal to

���
n

�	��n�
�	Qk
†	�0�
�
	2 + 	��n�
�	Qk	�0�
�
	2��En − E0�� = ���0�
�	†Qk

†,�H
,Qk�‡	�0�
�
 � m�Qk� . �37�

On the other hand, by using commutation relation �31�, the second factor on the right side of inequality �36� can be simplified
as

��
n

�	��n�
�	Qk
†	�0�
�
	2 + 	��n�
�	Qk	�0�
�
	2�

�En − E0�
= ��

n

�	��n�
�	Ak
†	�0�
�
	2 + 	��n�
�	Ak	�0�
�
	2��En − E0�

= ���0�
�	†Ak
†,�H
,Ak�‡	�0�
�
 � m�Ak� . �38�

Therefore, we have proved that

��0�
�	Qk
†Qk	�0�
�
 � m�Qk�m�Ak� . �39�

Here m�Qk� and m�Ak� are quantities of order O�1� as N


tends to infinity. Therefore, the correlation function of Qk is
at most a quantity of order O�1�.

Replacing Qk in inequality �39� with Eq. �31� and expand-
ing the inequality, we find

�
�

	��	2��0�
�	Gk
�†Gk

�	�0�
�


+ �
���

2��
� ����0�
�	Gk

�†Gk
�	�0�
�
 � m�Qk�m�Ak� .

�40�

By shifting the mixing terms to the right side of inequality
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�40� and applying the Cauchy-Schwarz inequality to these
terms, we can further derive the inequality

�
�

	��	2��0�
�	Gk
�†Gk

�	�0�
�
 � m�Qk�m�Ak� + �
���

2	��	

�	��	���0�
�	Gk
�†Gk

�	�0�
�
��0�
�	Gk
�†Gk

�	�0�
�
 .

�41�

Now, let us assume that �0�
� has a long-range order in
only one of the operators in Eq. �31�, say for some Gk

��Bk,
then

��0�
�	Bk
†Bk	�0�
�
 � �BN
, �B � 0, �42�

as N
→�. Since the left side of inequality �41� is a quantity
of order O�N
� and the correlation functions of other opera-
tors are, at most, of order O�1� in the thermodynamic limit
by assumption, the right side of the inequality �41� can be, at
most, a quantity of order O��N
�. In this case, inequality
�41� becomes contradictory. Therefore, �0�
� must have a
long-range order of an additional operator, say Gk

��Ck, that
is,

��0�
�	Ck
†Ck	�0�
�
 � �CN
, �C � 0. �43�

The conclusion is that either all orders are absent or at
least two long-range orders must be present simultaneously
in the ground state �0�
� of the Hamiltonian H
. Obviously,
it is easy to generalize the conclusion to the case where there
are more than three operators on the right side of Eq. �31�.

Applying the above rigorous result to Hamiltonian �1�, we
have a basic conclusion that orders of the same group listed
in Table II, say Nos. 1–5, either should be all absent or at
least two of them should coexist. Specifically, we can refine
this conclusion as follows. Since group A1 is quite similar to
group B1, we focus on group B1.

First, having two electrons located on the same site is
energetically unfavorable due to the on-site Coulomb repul-
sion, so the probability of forming an on-site electron pair is
low, let alone coherent pair condensation. This argument
does not rely much on the strength of the on-site Coulomb
interaction. As long as there are on-site Coulomb repulsions
and considering the fact that on-site Coulomb repulsions are
always stronger than off-site Coulomb repulsions, the prob-
abilities of off-site pairings are far greater than those of on-
site pairing. Therefore, all the states involving s-wave pair-
ing are suppressed. In other words, Nos. 5 and 9 �symmetric
intraorbital s�, 13 �symmetric interorbital s�, and 16 �anti-
symmetric interorbital s� will be unfavorable.

Second, Eq. �20� shows that all order parameters in the
second group B1 of Table II have spin singlet, intraorbital,
and even parity pairing symmetry. Nevertheless, our rigorous
results �Eqs. �42� and �43�� require that orders of Nos. 6–8
should either vanish simultaneously or at least two of them
should coexist. If two of them coexist, the magnitudes of the
two order parameters are determined by the product of their
pairing functions �f6�k� , f7�k��. So if s� and sxy coexist,
f6�k�= �cos kx+cos ky� and f8�k�=cos kx cos ky. Their over-
lap becomes dominant around the hole pocket about the �
point in the Brillouin zone but is very small around the elec-
tron pocket of the M point. While if dx2−y2 and sxy coexist,

f7�k�= �cos kx−cos ky� and f8�k�=cos kx cos ky. Their prod-
uct has an enhanced contribution from the electron pocket
about the M point but is suppressed from the hole pocket
about the � point. However, the coexistence of s� and dx2−y2

is not favorable because their overlap is very tiny around
both M and � points.

Third, in the group B2 of Table II, there are Nos. 10 �sym-
metric interorbital s��, 11 �symmetric interorbital sxy�, and 12
�intraorbital dxy� left on the right side of Eq. �23�. Since
f12�k�=sin kx sin ky is peaked around �� /2,� /2�, if No. 12
coexists with No. 10 or No. 11, f12�k� has a tiny contribution
at M and � points and does support the current Fermi-surface
topology; therefore, No. 12 is not favored. So the remaining
s� and sxy of the spin singlet must either be absent together or
coexist simultaneously. According to the behavior of pairing
function f10�11��k�, the coexistence of s� and sxy is compatible
only around hole pocket about � point but not favored in
electron pocket about M point.

Fourth, regarding pairings No. 14 �antisymmetric interor-
bital s�� and No. 15 �antisymmetric interorbital sxy� on the
right side of Eq. �26�, which belong to group A2 of Table II,
our rigorous results �Eqs. �42� and �43�� impose that both of
them should either be absent or coexist. Besides, both of
these two pairings carry antisymmetric orbital parity, and
their excitation spectra will become gapless, which is incon-
sistent with experimental evidence showing either nodal gap
or full gap.12,13 Therefore, the chance of their coexistence
seems slim.

Finally, in the weak coupling limit, two orbitals’ energy
splitting might lead to a mismatch of interorbital pairing in
momentum space with opposite sign instead of pairing be-
tween two different 	k	’s. That is, the piling up of low-energy
density of states in the gapless SC state will lead to a Fulde-
Ferrel-Larkin-Ovchinnikov �FFLO� state with magnetic or-
dering and will not create SC instability. In this sense, the
orbital antisymmetric pairing state such as Nos. 14 and 15
might be ruled out. Moreover, other interband pairings, such
as Nos. 10 and 11 in Table II, are also not favorable accord-
ing to the analysis based on the FFLO state. Thus we arrive
at our further conclusion that, around half filling, in the elec-
tron doping region, the system will favor coexistence of
dx2−y2 and sxy waves pairing, while in the hole doping region,
the system might prefer to have s� and sxy waves pairing.

VI. SUMMARY

To summarize, we have built some identities based on a
two-orbital model and obtained constraints on a few possible
pairings. Our results provide more information than the
group theory classification. According to the sufficient con-
dition for coexistence of two superconducting orders and re-
sorting to physical consideration, we propose the most favor-
able pairings around half-filling. Although our discussion is
based on a two-orbital model, it is straightforward to gener-
alize the strategy to Hamiltonians involving more orbitals.
For example, we can construct similar commutation relation
in three-orbital model with the notations defined in Ref. 27,
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�H3-orbital,�s
xz + �s

yz − �s
xy�

= �
k

�− 2�xz�k�ck,↑
xz c−k,↓

xz − 2�yz�k�ck,↑
yz c−k,↓

yz

+ 2�xy�k�ck,↑
xy c−k,↓

xy − 4txz,yz� sin�kx�sin�ky��ck,↑
yz c−k,↓

xz

+ ck,↑
xz c−k,↓

yz �� − �U1/2 + 2U2�n
/3���s
xz + �s

yz − �s
xy� ,

�44�

and we will come to the similar conclusion from this identity.
In principle, we have not ruled out spatial odd parity pairing,
e.g., p wave, which can be achieved by commutation be-
tween an odd parity pairing operator and the Hamiltonian, or
other combination of the commutation operators, and the suf-
ficient condition of coexistence of the odd parity pairings is
still applicable. Nevertheless, they do not get along well with
our Fermi-surface topology analysis given above. In addi-

tion, it is worth mentioning that, even though the chances of
on-site pairing seem slim, we cannot rule out the possibilities
of such pairings. In the event of such on-site pairing, the
issue of coexistence of superconducting orders becomes
complex.
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